Activity of ALX-009, a novel combination of hypothiocyanite and lactoferrin, against clinical Cystic Fibrosis (CF) respiratory pathogens

Payne, Joanna1; Ingram, Rebecca2; Elborn, J. Stuart1;2; Gilpin, Deirdre1; Juarez-Perez, Victor3; Tunney, Michael M.1
1 Halo, Queen’s University Belfast, Belfast, UK. 2 Centre for Experimental Medicine, Queen’s University Belfast, Belfast, UK. 3 Alaxia SAS, Lyon, France.

Introduction

Given the problems with antibiotic resistance and the detection of new and emerging pathogens in the CF lung, there is a clear unmet need for novel antimicrobial agents for treatment of respiratory infection in CF patients.

ALX-009, a combination of lactoferrin and hypothiocyanate, has been shown to have in vitro activity against a range of CF pathogens, notably *Pseudomonas aeruginosa* and *Burkholderia* isolates.

Aim: To determine if treatment of sputum from CF patients with ALX-009 results in a significant decrease in total sputum microbial load and microbial load of key CF pathogens, *P. aeruginosa* and *Burkholderia cepacia complex* (Bcc).

Methods

- Sputum samples, excess to clinical requirements, were collected from CF patients chronically colonized with *P. aeruginosa* (n=34) or Bcc (n=9). Sputum plugs were selected and homogenised by repeated passage through a 1ml syringe.
- To determine the effect of a single treatment with ALX-009, ALX-009, tobramycin, ALX-009 and tobramycin or Phosphate buffered saline (PBS; control) were added to *P. aeruginosa* (n=24) and Bcc (n=9) positive sputum samples and total viable counts (TVC) measured at 0, 6 and 24 hours. To determine the effect of treating sputum with a second dose of ALX-009, CF sputum samples with a high *P. aeruginosa* load (≥10⁶) (n=10) were used. ALX-009 was added at 0 and 12 hours with TVCs performed at 0, 6, 12, 18, 24 and 34 hours. A reduction, by any of the agents/combinations under test, of the original inoculum by ≥3 log₈ CFU/g sputum was considered bactericidal.
- TVCs for *P. aeruginosa* and Bcc count were performed using selective agar plates, with non-selective blood agar plates used to determine total sputum bacterial load.

Results

- Following a single dose, ALX-009 demonstrated bactericidal activity against *P. aeruginosa* in 18/24 sputum samples (Figure 1A).
- In 10/24 samples the TVC of *P. aeruginosa* was reduced below the detectable limit at 24 hours (Figure 1B); initial *P. aeruginosa* bacterial burden was approximately 10⁶ CFU/g sputum in these samples. In contrast, for the remaining 14/24 samples in which *P. aeruginosa* was detected at 24 hours (Figure 1C), initial *P. aeruginosa* bacterial burden was significantly higher at approximately 10⁷ CFU/g sputum.
- Treatment with a second dose of ALX-009 resulted in a further reduction in *P. aeruginosa* TVC at 34 hours in comparison to a single dose (Figure 1E). For 7/10 samples, *P. aeruginosa* TVC was below the detectable limit at 34 hours (Figure 1F); in the remaining 3 samples, *P. aeruginosa* TVC was reduced but was still detected.
- Given the excellent activity of ALX-009 against *P. aeruginosa* growing in sputum, it was difficult to determine if there was a synergistic effect when ALX-009 was combined with tobramycin. However, synergistic activity was apparent for 4 samples at 24 hours.
- ALX-009 demonstrated bactericidal activity for 4/9 Bcc samples at 24 hours; however, the TVC of Bcc was not reduced below the detectable limit for any sample at any timepoint (Figure 1D).

Discussion

This study demonstrates that treatment of sputum from CF patients with ALX-009 results in a significant decrease in the microbial load of key respiratory pathogens. Moreover, there was no significant change in the total load of bacteria present in the respiratory microbiota. A second dose of ALX-009, added within a similar time-frame to the administration of currently used inhaled antibiotics, inhibited the regrowth of *P. aeruginosa* in sputum samples with a high *P. aeruginosa* load.